Magnetoresistive Effect in PET Films with Iron Nanoparticles Synthesized by Ion Implantation

نویسندگان

  • M. G. Lukashevich
  • V. N. Popok
چکیده

Thin polyethyleneterephthalate (PET) layers with Fe nanoparticles (NPs) were synthesized by high-fluence ion implantation. Temperature dependence of conductance and magnetoresistance, were studied as a function of ion fluence. It is found that the implantation with fluences of about 1.0×10 cm causes high enough concentration of metal inclusions to provide conditions for electrical percolation that leads to an insulator-to-metal transition (IMT) in charge carrier transport mechanisms. The magnetoresistance measurements indicate that the magnetic percolation takes place at metal concentrations (fluences) lower than those needed for the electrical percolation. For the samples on insulating side of the IMT, a non-monotonous dependence of resistance in an increasing external magnetic field is observed due to anisotropic magnetoresistive effect and charge carrier scattering on magnetic inclusions. For the samples implanted with fluences ≥ 1.0×10 cm, the magnetoresistance becomes a monotonous decreasing function of the external magnetic field which is typical for ferromagnetic metals that indicates effective magnetic coupling of the iron inclusions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel MRI contrast agent synthesized by ion exchange method

Objective: In this study, the zeolite-coated iron oxide nanoparticles were evaluated as MRI contrast agent and effect of the nanocomposite synthesis method on MRI contrast was tested. Materials and Methods: Ion exchange method was used for synthesis of iron oxide-zeolite and the as prepared nanocomposite was characterized by XRD, FESEM and TEM. The nanocomposite toxicity in the cell culture, a...

متن کامل

Influence of Ni Deposition and Subsequent N+ Ion Implantation at Different Implantation Energies on Nano-Structure and Corrosion Behavior of 316 Stainless Steels

Nickel films of 300 nm thickness were deposited by electron beam evaporation at room temperature on 316 stainless steels. Corrosion studies of Ni coated 316 SS have been performed after N+ ion implantation at different energies of 20, 40, 60 and 80 keV. The structure and surface morphology of the films were evaluated using X-ray diffraction (XRD), atomic force microscope (AFM) an...

متن کامل

The Effects Of Interfacial Roughness On The Argon Ion Implanted Tantalum Films

In the present study, effect of interfacial roughness on the ion implanted Tantalum based surfaces has been investigated. The argon ions with energy of 30 keV and in doses of 1×1017 , 3×1017 , 5×1017 , 7×1017 , and 10×1017  (ion/cm2) have been used at ambient temperature. The Atomic Force Microscopy (AFM), analysis have been used to study and characterize the surfaces morphology. The effect of ...

متن کامل

Conductive Polythiophene Nanoparticles Deposition on Transparent PET Substrates: Effect of Modification with Hybrid Organic-inorganic Coating (RESEARCH NOTE)

In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were depo...

متن کامل

Longitudinal Magneto-Optical Kerr Effect in Ce:YIG Thin Films Incorporating Gold Nanoparticles

We report an experimental study on optical and magneto-optical properties of Cesubstituted yttrium iron garnet thin films incorporating gold nanoparticles. Au nanoparticles were formed by heating Au thin film on cubic quartz and garnet substrate in vacuum chamber and a Ce:YIG layer was deposited on them by the aid of Pulsed laser deposition method. A large enhancement of the longitudinal Kerr e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010